New rubber could make longer lasting, safer EV batteries

New rubber could make longer lasting, safer EV batteries

For EVs to become mainstream, they need cost-effective, safer, longer-lasting batteries that won’t explode during use or harm the environment. Researchers at the Georgia Institute of Technology may have found a promising alternative to conventional lithium-ion batteries made from a common material: Rubber.

Elastomers, or synthetic rubbers, are widely used in consumer products and advanced technologies such as wearable electronics and soft robotics because of their superior mechanical properties. The researchers say they found that the material, when formulated into a 3D structure, acted as a superhighway for fast lithium-ion transport with superior mechanical toughness, resulting in longer charging batteries that can go farther.

Georgia-Tech-Rubber-Electrolyte-2-1400
Georgia Tech engineers say the key breakthrough with rubber electrolytes is allowing the material to form a three-dimensional interconnected plastic crystal phase within the robust rubber matrix.

In conventional lithium-ion batteries, ions are moved by a liquid electrolyte. However, the battery is inherently unstable: even the slightest damage can leak into the electrolyte, leading to explosion or fire. The safety issues have forced the industry to look at solid-state batteries, which can be made using inorganic ceramic material or organic polymers.

“Most of the industry is focusing on building inorganic solid-state electrolytes. But they are hard to make, expensive and are not environmentally friendly,” said Seung Woo Lee, associate professor in the George W. Woodruff School of Mechanical Engineering, who is part of a team of researchers who have uncovered a rubber-based organic polymer superior to other materials.

Solid polymer electrolytes continue to attract great interest because of their low manufacturing cost, non-toxicity and soft nature. However, conventional polymer electrolytes do not have sufficient ionic conductivity and mechanical stability for the reliable operation of solid-state batteries, the researchers say.

Georgia Tech engineers have solved common problems (slow lithium-ion transport and poor mechanical properties) using the rubber electrolytes. The key breakthrough, they say, was allowing the material to form a three-dimensional interconnected plastic crystal phase within the robust rubber matrix. This unique structure has resulted in high ionic conductivity, superior mechanical properties and electrochemical stability.

This rubber electrolyte can be made using a simple polymerization process at low temperature conditions, generating robust and smooth interfaces on the surface of electrodes. These unique characteristics of the rubber electrolytes prevent lithium dendrite growth and allow for faster moving ions, enabling reliable operation of solid-state batteries even at room temperature.

“Rubber has been used everywhere because of its high mechanical properties, and it will allow us to make cheap, more reliable and safer batteries,” said Lee.

“Higher ionic conductivity means you can move more ions at the same time,” said Michael Lee, a mechanical engineering graduate researcher. “By increasing specific energy and energy density of these batteries, you can increase the mileage of the EV.”

The researchers are now looking at ways to improve the battery performance by increasing its cycle time and decreasing the charging time through even better ionic conductivity. So far, their efforts have seen a two-time improvement in the battery’s performance/cycle time, they say.

SK Innovation, a global energy and petrochemical company, is funding additional research of the electrolyte material as part of its ongoing collaboration with the Institute to build next-generation solid-state batteries that are safer and more energy-dense than conventional LI-ion batteries. The company recently announced the construction of a new EV battery plant in Commerce, Georgia, expected to produce an annual volume of lithium-ion batteries equal to 21.5 Gigawatt-hours by 2023.

“All-solid-state batteries can dramatically increase the mileage and safety of electric vehicles. Fast-growing battery companies, including SK Innovation, believe that commercializing all-solid-state batteries will become a game-changer in the electric vehicle market,” said Kyounghwan Choi, director of SK Innovation’s next-generation battery research center. “Through the ongoing project in collaboration with SK Innovation and Professor Seung Woo Lee of Georgia Tech, there are high expectations for rapid application and commercialization of all-solid-state batteries.”

You May Also Like

Yoshi Mobility plans to expand into EV charging, preventative maintenance, virtual inspections

The company is also commercializing its mobile EV charging platform to address challenges related to charging EV fleets.

Yoshi-Mobility-EV-charging-1400

Yoshi Mobility recently closed its $26 million Series C funding round. The round includes strategic investors General Motors Ventures and Bridgestone Americas, as well as international investors Universal Motors Agencies and Shikra Limited. Launched out of Y Combinator in 2016, the company is also backed by ExxonMobil, DN Automotive, NBA All-Star Kevin Durant, and NFL legend Joe Montana. Yoshi Mobility has raised more than $60 million to date. In addition to scaling its core business, the company said Series C funding enables it to expand three new business lines: preventative maintenance, virtual vehicle inspections and electric vehicle (EV) charging.

LG Energy Solution’s $5.5B battery facility to be completed by 2026

LG Energy Solution said the cylindrical battery plant, called LG Energy Solution Arizona, will produce 46-Series batteries for EVs.

LGES_Arizona-Construction
MoveEV introduces new CTO

Lindsey Bleimes will oversee the technological advancement and expansion of the company’s flagship product, ReimburseEV.

Lindsey-Bleimes
Canoo to export LDV 130 and LDV 190 delivery vehicles to Saudi Arabia

Jazeera Paints will be deploying Canoo’s LDV 130 and LDV 190 delivery vehicles within its existing fleet in Saudi Arabia.

CanooCargoVan_Front
Lime, Hight Logistics and Forum Mobility strike deal for zero-emissions EV shipping

Lime anticipates the agreement will shift more than 300 port-to-hub shipments to electric, zero-emission trucks annually.

Forum_Mobility_lime_hight

Other Posts

Pirelli P Zero R, P Zero Trofeo RS picked for Porsche Taycan restyling

Both tires feature the Elect marking on the sidewall, indicating a tire that suits the characteristics of EVs.

Pirelli-Porsche-OE
Mahle secures orders for thermal management modules

Mahle said the modular design approach enables smaller installation spaces and drastically reduces assembly expenditures.

mahle_thermal_management
U Power launches commercial operation for EV battery swapping

As part of this expansion, U Power said it plans to establish 60 power-swapping service points which will cater to over 800 customers.

U-Power-battery-swapping
Why a 12-volt battery is still essential in EVs

A device similar to an alternator, called a DC-DC converter, charges the 12-volt battery from the high-voltage battery pack.

EV-IQ-EV-12vBattery-1400