New electrode could unleash faster battery charge times

New electrode could unleash faster battery charge times

University of Texas researchers say they have fabricated a new type of electrode for lithium-ion batteries that could unleash greater power and faster charging. The battery’s positively and negatively charged parts use magnets to create a unique alignment that sidesteps common problems associated with sizing up these critical components.

According to the researchers, the electrode could potentially facilitate twice the range on a single charge compared to batteries using an existing commercial electrode.

“Two-dimensional materials are commonly believed as a promising candidate for high-rate energy storage applications because it only needs to be several nanometers thick for rapid charge transport,” says Guihua Yu, a professor in UT Austin’s Walker Department of Mechanical Engineering and Texas Materials Institute. “However, for thick-electrode-design-based next-generation, high-energy batteries, the restacking of nanosheets as building blocks can cause significant bottlenecks in charge transport, leading to difficulty in achieving both high energy and fast charging.”

The researchers say the key is to use thin two-dimensional materials as the building blocks of the electrode, stacking them to create thickness and then using a magnetic field to manipulate their orientations. The research team uses commercially available magnets during the fabrication process to arrange the two-dimensional materials in a vertical alignment, creating a fast lane for ions to travel through the electrode.

“Our electrode shows superior electrochemical performance partially due to the high mechanical strength, high electrical conductivity, and facilitated lithium-ion transport thanks to the unique architecture we designed,” said Zhengyu Ju, a graduate student in Yu’s research group who is leading this project.

In addition to comparing their electrode with a commercial electrode, the researchers also fabricated a horizontally arranged electrode using the same materials for experimental control purposes. The researchers say they were able to recharge the vertical electrode to 50% energy level in 30 minutes, compared with 2 hours and 30 minutes with the horizontal electrode.

The researchers emphasize that they are early in their work, looking at just a single type of battery electrode in this research.

They aim to generalize their methodology of vertically organized electrode layers to apply it to different types of electrodes using other materials. They say this could enable future fast charging with electric vehicles.

The research team includes from The University of Texas at Austin: Yu, Ju, Xiao Xu, Xiao Zhang and Kasun U. Raigama; and from Stony Brook/Brookhaven National Laboratory: Steven T. King, Kenneth J. Takeuchi, Amy C. Marschilok, Lei Wang and Esther S. Takeuchi. The U.S. Department of Energy funded the research through the multi-institutional Energy Frontier Research Center, the Center for Mesoscale Transport Properties.

You May Also Like

Phoenix Motor, InductEV partner on wireless charging solution for commercial vehicles

This partnership will provide Phoenix’s customers with the option to select wireless inductive charging for use in duty cycles and recurring routes.

Phoenix-at-PortofLA

Phoenix Motor, a manufacturer of heavy-duty transit buses and electrification solutions provider for medium-duty vehicles, introduced an integration agreement with InductEV. The new partnership will develop software, hardware, cooling and electrical systems integration of InductEV’s wireless charging pads with Phoenix’s zero-emission drive systems. This partnership will provide Phoenix’s customers with the option to select wireless inductive charging for use in duty cycles and recurring routes.

Research finds that caffeine boosts platinum electrode performance

This discovery has the potential to reduce platinum requirements, making fuel cells more affordable and efficient, the researchers said.

Caffeine-stock
FLO survey: most drivers rely on fast chargers for long trips

Conducted last year, FLO said the survey supports the buildout of its own-and-operate network of fast chargers.

FLO_Survey
CEC prepares to fund up to $16M in hydrogen infrastructure incentives

CALSTART said applicants must show proof that their projects are intended for medium- or heavy-duty hydrogen fuel cell vehicles.

Hydrogen-opposed-piston-engine-1400
WeaveGrid to test software on real-world EVs through partnership with ACM

WeaveGrid said its software helps EVs integrate with the electric grid by leveraging data and controls available via vehicle telematics.

WeaveGrid-partnership-ACM

Other Posts

Global EV sales expected to increase by 21% in 2024

This represents a significant decline from growth rates of 31% in 2023 and 60% in 2022, ABI Research said.

Tesla-Model-Y-1400
Yoshi Mobility plans to expand into EV charging, preventative maintenance, virtual inspections

The company is also commercializing its mobile EV charging platform to address challenges related to charging EV fleets.

Yoshi-Mobility-EV-charging-1400
LG Energy Solution’s $5.5B battery facility to be completed by 2026

LG Energy Solution said the cylindrical battery plant, called LG Energy Solution Arizona, will produce 46-Series batteries for EVs.

LGES_Arizona-Construction
CALSTART praises the National Zero-Emission Freight Corridor Strategy

The strategy prioritizes a phased-in approach and has taken into account the speed at which electric charging infrastructure can be built at scale.

CARB-CALSTART--Ride-Drive-1400