Will solid-state batteries help eliminate EV fires?

Will solid-state batteries help eliminate EV fires?

While EV battery fires are rare, they can be very severe when they occur.

Thermal runaway and the associated battery fires have proven to be a critical concern for customers, battery designers, and electric vehicle manufacturers. Many vehicles have experienced battery fires and hundreds of thousands have been recalled. While these events are rare, they can be very severe, and it is important to provide as much safety for people in and around these vehicles. A common question is whether the upcoming solid-state battery technology will be safer and will this eliminate the need for thermal management and fire protection materials?

IDTechEx’s new report “Solid-State and Polymer Batteries 2023-2033: Technology, Forecasts, Players” looks at the technologies, players, safety, and adoption of solid-state batteries.

Are Solid-State Batteries Safer?

At first glance, solid-state batteries present various safety benefits. They eliminate the flammable liquid electrolyte and can replace it with a non-flammable solid-state electrolyte. They also generally have a wider operating temperature window, potentially making the occurrence of thermal runaway through cell overheating less likely. The heat generated through external heating failure is also typically reduced. 

However, this does not tell the entire story. The term solid-state battery actually refers to a host of battery technologies. In some cases, the battery will still use a liquid component for ion exchange (semi-solid-state), meaning a volatile component is still present. Some polymer solid-state electrolytes will not be completely inflammable, and any electrolyte can melt if the system gets hot enough.

In 2022, the public transport operator in Paris temporarily withdrew 149 electric buses after two separate bus fires. The cells used here were stated to use batteries with an LFP cathode, Li metal anode, and solid-state polymer electrolyte. The supplier describes its batteries as “completely solid, with no liquid components, no nickel, and no cobalt”.

Another example comes from a simulation-based research study from Sandia National Laboratories in 2022 (Hewson et. al., Joule, Vol.6, Issue 4, 742-755) that compared safety for an all-solid-state battery, a solid-state battery with liquid electrolyte added in the cathode, and a conventional liquid-based Li-ion battery. The study found that for external heating failure, a solid-state battery with a small amount of liquid electrolyte generates less heat than a typical Li-ion battery but more than an all solid-state battery. For short circuit failure, the heat released was dependent only on cell capacity. Given that solid-state batteries may have a higher energy density, more heat could be generated. The typical thermal runaway temperatures talked about for regular Li-ion batteries is around 1000-1200oC; in some scenarios in this research, the temperature rise of the solid-state batteries reached nearly 1800oC.

Solid-state battery development is still in progress, but the takeaway is that solid-state batteries may well be safer in most cases. Still, no battery system will be 100% safe. Hence, thermal management and fire protection materials will always be required to provide that final layer to delay fire propagation outside the pack.

Fire Protection Material Solutions

The sorts of fire protection material used for solid-state will largely be similar to those used for traditional Li-ion batteries, the form factor of the cells (cylindrical, prismatic, pouch), and the overall design of the pack will have a greater impact on the choice of material. Today, commonly used materials for passive fire protection are mica sheets, ceramic blankets, encapsulating foams, and fire retardant coatings, among others. Aerogels are gaining traction in the market and options like intumescent coatings and phase change materials are receiving increased interest.

Many of these materials would struggle to deal with temperatures above 1500oC. Still, the end goal is not necessarily to completely halt propagation, but to delay it for as long as possible. In addition to high-temperature performance, these materials increasingly have to deal with other functions, such as conformability with cells, compression performance, and cost. The rapidly growing EV market, with an increased focus on fire safety, will present a variety of opportunities for fire protection materials and they will not be eliminated by alternative battery technologies like solid-state.

This report was authored by Dr. James Edmondson, principal technology analyst at IDTechEx.

You May Also Like

BorgWarner signs relationship agreement for LFP battery packs

BorgWarner said it will be the only non-OEM localized manufacturer with rights to localize LFP battery packs for commercial vehicles.

BorgWarner-Santroll-eMotor-Handshake

BorgWarner entered a strategic relationship agreement with FinDreams Battery, a subsidiary of BYD Company Limited. Under this agreement, BorgWarner said it will be the only non-OEM localized manufacturer, unaffiliated with FinDreams Battery, with rights to localize LFP battery packs for commercial vehicles utilizing FinDreams Battery blade cells in Europe, the Americas, and select regions of Asia Pacific. The duration of the agreement is eight years.

Unico acquires Present Power Systems

Through the acquisition, Unico will adopt Present Power Systems’ portfolio of solutions for battery cell, module and pack testing, and more.

Unico-acquisition
Cox Automotive opened an EV battery solutions center

The EV battery service center offers a variety of storage, logistics, diagnostics, repair and remanufacturing services.

Cox-Auto_EV_Battery_Service_Network
StoreDot produces XFC silicon prismatic battery cells

Prismatic cells, which are rectangular and stacked in layers, now represent the form factor of choice for EV manufacturers.

StoreDot-achieves-major-commercialization-milestone-with-first-prismatic-XFC-battery-cells
InductEV reveals new director of port & intermodal strategies

Tim DeMoss joined the company after 17 years with the Port of Los Angeles, where he most recently served as an environmental affairs officer.

InductEV-Tim-DeMoss-headshot

Other Posts

Cold weather range loss and EVs: Separating fact from fiction

EVs are frequently criticized during colder months for the range loss they experience, but is this criticism valid?

EV-Cold-Weather-Range-1400
Monolith partners with About:Energy

The immediate focus for the partnership is automotive, with the potential to roll out to other transport sectors, such as micromobility.

Monolith-AI-platform
Black Book, Recurrent team up on Battery Adjusted Values

Black Book said its Battery Adjusted Values will apply an additional increase or decrease to Black Book’s VIN-specific valuations.

Canada-EV-standard-1400
Elywhere launches in North America

Elywhere said its chargers can be configured to support power in the 1 MW range, providing solutions for electric fleets.

Electric-Grid-EV-Growth-1400