New rubber could make longer lasting, safer EV batteries

New rubber could make longer lasting, safer EV batteries

For EVs to become mainstream, they need cost-effective, safer, longer-lasting batteries that won’t explode during use or harm the environment. Researchers at the Georgia Institute of Technology may have found a promising alternative to conventional lithium-ion batteries made from a common material: Rubber.

Elastomers, or synthetic rubbers, are widely used in consumer products and advanced technologies such as wearable electronics and soft robotics because of their superior mechanical properties. The researchers say they found that the material, when formulated into a 3D structure, acted as a superhighway for fast lithium-ion transport with superior mechanical toughness, resulting in longer charging batteries that can go farther.

Georgia-Tech-Rubber-Electrolyte-2-1400
Georgia Tech engineers say the key breakthrough with rubber electrolytes is allowing the material to form a three-dimensional interconnected plastic crystal phase within the robust rubber matrix.

In conventional lithium-ion batteries, ions are moved by a liquid electrolyte. However, the battery is inherently unstable: even the slightest damage can leak into the electrolyte, leading to explosion or fire. The safety issues have forced the industry to look at solid-state batteries, which can be made using inorganic ceramic material or organic polymers.

“Most of the industry is focusing on building inorganic solid-state electrolytes. But they are hard to make, expensive and are not environmentally friendly,” said Seung Woo Lee, associate professor in the George W. Woodruff School of Mechanical Engineering, who is part of a team of researchers who have uncovered a rubber-based organic polymer superior to other materials.

Solid polymer electrolytes continue to attract great interest because of their low manufacturing cost, non-toxicity and soft nature. However, conventional polymer electrolytes do not have sufficient ionic conductivity and mechanical stability for the reliable operation of solid-state batteries, the researchers say.

Georgia Tech engineers have solved common problems (slow lithium-ion transport and poor mechanical properties) using the rubber electrolytes. The key breakthrough, they say, was allowing the material to form a three-dimensional interconnected plastic crystal phase within the robust rubber matrix. This unique structure has resulted in high ionic conductivity, superior mechanical properties and electrochemical stability.

This rubber electrolyte can be made using a simple polymerization process at low temperature conditions, generating robust and smooth interfaces on the surface of electrodes. These unique characteristics of the rubber electrolytes prevent lithium dendrite growth and allow for faster moving ions, enabling reliable operation of solid-state batteries even at room temperature.

“Rubber has been used everywhere because of its high mechanical properties, and it will allow us to make cheap, more reliable and safer batteries,” said Lee.

“Higher ionic conductivity means you can move more ions at the same time,” said Michael Lee, a mechanical engineering graduate researcher. “By increasing specific energy and energy density of these batteries, you can increase the mileage of the EV.”

The researchers are now looking at ways to improve the battery performance by increasing its cycle time and decreasing the charging time through even better ionic conductivity. So far, their efforts have seen a two-time improvement in the battery’s performance/cycle time, they say.

SK Innovation, a global energy and petrochemical company, is funding additional research of the electrolyte material as part of its ongoing collaboration with the Institute to build next-generation solid-state batteries that are safer and more energy-dense than conventional LI-ion batteries. The company recently announced the construction of a new EV battery plant in Commerce, Georgia, expected to produce an annual volume of lithium-ion batteries equal to 21.5 Gigawatt-hours by 2023.

“All-solid-state batteries can dramatically increase the mileage and safety of electric vehicles. Fast-growing battery companies, including SK Innovation, believe that commercializing all-solid-state batteries will become a game-changer in the electric vehicle market,” said Kyounghwan Choi, director of SK Innovation’s next-generation battery research center. “Through the ongoing project in collaboration with SK Innovation and Professor Seung Woo Lee of Georgia Tech, there are high expectations for rapid application and commercialization of all-solid-state batteries.”

You May Also Like

Lightning eMotors Launches Online EV Fleet Planner

The Fleet Planner displays recommended Lightning eMotors vehicles and the associated charge rates needed to fit the specific application.

Lightning-eMotors-Fleet-Manager

Lightning eMotors has released its new virtual "Fleet Planner," a free fleet configuration tool that allows fleet managers to input their individual fleet characteristics and receive a customized operating cost analysis and carbon-reduction metrics based on the recommended Lightning eMotors electric vehicle (EV) that best fits their specific needs.

Shell acquires EV charging company Volta for $169M

The companies say the transaction brings Volta’s dual charging and media network to Shell’s established brand.

BorgWarner-Santroll-eMotor-Handshake-1400
DOE awards millions for next-gen EV battery development

Projects in the program aim to expand domestic EV adoption by developing batteries that last longer and charge faster.

DOE-Department-of-Energy-next-gen-solid-state-ev-battery-1400
MEMA establishes Center for Sustainability

MEMA says the center’s community will help members build an advantage as they respond to the needs of their customers.

MEMA-Center-Sustainability-1400
LG Energy, Honda JV to produce EV batteries

The companies’ overall investment related to the JV is projected to reach $4.4 billion.

Honda-Level-2-EV 1400

Other Posts

Apollo Tyres launches new EV all-season tire in Europe

Apollo Tyres launches the Vredestein Quatrac Pro EV, Europe’s first all-season tire developed specifically for electric vehicles and hybrids.

Vredestein-Quatrac-Pro-EV-application-1400
NAPA hopes NexDrive training will be shops’ EV entry point

The program is launching in the U.S. after seeing success in Europe and Canada.

NAPA-EV-Training
EV trends: From battery leasing to the death of the hybrid

The EV headlines just don’t stop coming, but where are the trends actually leading the automotive industry?

Amped-Featured-Image-EP29
Volkswagen enhances Modular Electric Drive System for EVs

Volkswagen’s Modular Electric Drive System upgrade will increase range and charging speeds in its EVs.

Volkswagen-MEB-platform-EV-1400