New rubber could make longer lasting, safer EV batteries

New rubber could make longer lasting, safer EV batteries

For EVs to become mainstream, they need cost-effective, safer, longer-lasting batteries that won’t explode during use or harm the environment. Researchers at the Georgia Institute of Technology may have found a promising alternative to conventional lithium-ion batteries made from a common material: Rubber.

Elastomers, or synthetic rubbers, are widely used in consumer products and advanced technologies such as wearable electronics and soft robotics because of their superior mechanical properties. The researchers say they found that the material, when formulated into a 3D structure, acted as a superhighway for fast lithium-ion transport with superior mechanical toughness, resulting in longer charging batteries that can go farther.

Georgia-Tech-Rubber-Electrolyte-2-1400
Georgia Tech engineers say the key breakthrough with rubber electrolytes is allowing the material to form a three-dimensional interconnected plastic crystal phase within the robust rubber matrix.

In conventional lithium-ion batteries, ions are moved by a liquid electrolyte. However, the battery is inherently unstable: even the slightest damage can leak into the electrolyte, leading to explosion or fire. The safety issues have forced the industry to look at solid-state batteries, which can be made using inorganic ceramic material or organic polymers.

“Most of the industry is focusing on building inorganic solid-state electrolytes. But they are hard to make, expensive and are not environmentally friendly,” said Seung Woo Lee, associate professor in the George W. Woodruff School of Mechanical Engineering, who is part of a team of researchers who have uncovered a rubber-based organic polymer superior to other materials.

Solid polymer electrolytes continue to attract great interest because of their low manufacturing cost, non-toxicity and soft nature. However, conventional polymer electrolytes do not have sufficient ionic conductivity and mechanical stability for the reliable operation of solid-state batteries, the researchers say.

Georgia Tech engineers have solved common problems (slow lithium-ion transport and poor mechanical properties) using the rubber electrolytes. The key breakthrough, they say, was allowing the material to form a three-dimensional interconnected plastic crystal phase within the robust rubber matrix. This unique structure has resulted in high ionic conductivity, superior mechanical properties and electrochemical stability.

This rubber electrolyte can be made using a simple polymerization process at low temperature conditions, generating robust and smooth interfaces on the surface of electrodes. These unique characteristics of the rubber electrolytes prevent lithium dendrite growth and allow for faster moving ions, enabling reliable operation of solid-state batteries even at room temperature.

“Rubber has been used everywhere because of its high mechanical properties, and it will allow us to make cheap, more reliable and safer batteries,” said Lee.

“Higher ionic conductivity means you can move more ions at the same time,” said Michael Lee, a mechanical engineering graduate researcher. “By increasing specific energy and energy density of these batteries, you can increase the mileage of the EV.”

The researchers are now looking at ways to improve the battery performance by increasing its cycle time and decreasing the charging time through even better ionic conductivity. So far, their efforts have seen a two-time improvement in the battery’s performance/cycle time, they say.

SK Innovation, a global energy and petrochemical company, is funding additional research of the electrolyte material as part of its ongoing collaboration with the Institute to build next-generation solid-state batteries that are safer and more energy-dense than conventional LI-ion batteries. The company recently announced the construction of a new EV battery plant in Commerce, Georgia, expected to produce an annual volume of lithium-ion batteries equal to 21.5 Gigawatt-hours by 2023.

“All-solid-state batteries can dramatically increase the mileage and safety of electric vehicles. Fast-growing battery companies, including SK Innovation, believe that commercializing all-solid-state batteries will become a game-changer in the electric vehicle market,” said Kyounghwan Choi, director of SK Innovation’s next-generation battery research center. “Through the ongoing project in collaboration with SK Innovation and Professor Seung Woo Lee of Georgia Tech, there are high expectations for rapid application and commercialization of all-solid-state batteries.”

You May Also Like

UL Solutions opens Illinois EV charging laboratory

The facility will supply EV charging OEMs and their suppliers with shorter development cycles.

UL-solutions-ev-lab-1400

UL Solutions has officially opened its North America Advanced Electric Vehicle (EV) Charging Laboratory in Northbrook, Illinois. The company says the facility will help enable EV charging original equipment manufacturers (OEMs) and their suppliers with shorter development cycles, faster time-to-market and the ability to be more competitive in the global marketplace.

GM, Samsung SDI to invest $3B in U.S. EV battery manufacturing

The companies say they plan to jointly operate the new facility, which will go live in 2026.

GM-Samsung-SDI-EV-battery-1400
Liqui Moly develops liquid thermal manager for EV batteries

The technology found in electric and hybrid vehicles functions optimally in certain temperature windows, Liqui Moly says.

Liqui-Moly-liquid-thermal-manager-electric-car-batteries-1400
Bosch developing automated EV battery-discharging plant

Bosch estimates EVs will account for around 70% of all newly registered passenger cars in Europe by 2030.

Bosch-Developing-Europes-First-Automated-Battery-Discharging-Plant-1400
WAE says new software can improve EV battery life, safety

The company hopes that “Elysia” will allow OEMs to develop batteries that are lighter, cheaper and more sustainable.

Elysia-WAE-EV-1400

Other Posts

Bridgestone rolls out its first EV-specific tire

The first sizes for the Turanza EV tire include fitments for Tesla Model 3, S, X and Y, as well as the Ford Mustang Mach-E.

Bridgestone-EV-Touring-Tire-1400
Michelin puts $300M into Canadian EV, sustainability endeavors

The investment will, in part, allow for the installation of new technologies needed for manufacturing EV tires.

Michelin-EV-investment-1400
Tesla to recall over a million vehicles in China

Tesla says it plans to repair the vehicles via an over-the-air software update.

Tesla-Model-Y-1400
Navistar partners with Quanta for EV infrastructure services

Navistar and Quanta say they will analyze, forecast, plan and execute across customers’ electrification journeys.

International-Quantra-Charging-Partnership-1400